Optimizing Database Performance

Database Design

Department of Computer Engineering

Sharif University of Technology

Maryam Ramezani maryam.ramezani@sharif.edu

mailto:maryam.ramezani@sharif.edu

Introduction

Motivation

U

DBMS stores vast quantities of data

U

Data is stored on external storage devices and fetched into main
memory as needed for processing
O Page is unit of information read from or written to disk. (in DBMS,
page may have size 8KB or more).

3 Data on external storage devices:

o Disks: Can retrieve random page at fixed cost

But reading several consecutive pages is much cheaper than reading them in random order
o Tapes: Can read pages only in sequence

Cheaper than disks; used for archival storage

O Cost of page /O dominates cost of typical database operations

Files and indices

a File organization:
o Method of arranging a file of records on external storage.
o Record id (rid) is sufficient to physically locate a record
a Indexes:

o Indexes are data structures that allow us to find the record ids of
records with given values in index search key fields

Alternative File Organizations

Many alternatives exist, each ideal for some situations, and not so good in

others:
o Heap (random order) files: Suitable when typical access is a file

scan retrieving all records.
o Sorted Files: Best if records must be retrieved in some order, or

only a range’ of records is needed.
o Indexes: Data structures to organize records via trees or hashing.
= Like sorted files, they speed up searches for a subset of
records, based on values in certain (“search key”) fields
= Updates are much faster than in sorted files.

Indexing

Introduction @

PhoneNumber
dbo.PhoneBook
LastName =

Q Scan Search

AND FirstName =

dbo.PhoneBook

LastName (50) NOT NULL,

FirstName (50) NOT NULL,

PhoneNumber (50) NOT NULL
) I

Results:
783-555-0110

It is insufficient!!!

Alexander, mary
344-555-0133

Kurtz, Jeffrey
452-555-0179

vessa, Robert
560-555-0171

Thames, Judy
799-555-0118

CE384: Database Design

Martinez, Frank
171-555-0147

Haines, Betty
867-555-0114

Burnett, Linda
121-555-0121

Harris, Keith
170-555-0127

Kitt, Sandra
303-555-0117

Brewer, Alan
494-555-0134

Campbell, Frank
491-555-0132

Logan, Todd
783-555-0110

Maryam Ramezani

Clayton, Jane
206-555-0195

Johnson, Brian
320-555-0134

Liu, David
440-555-0132

piaz, Brenda
147-555-0192

Introduction

OPF D Qg B w o M7

|

S[—_EL_\ ¥ FNOM emplogeas

WHERE nowve = “Felix"

Indexes

O An /ndex on a file speeds up selections on the search key fields for the

index.
o Any subset of the fields of a relation can be the search key for an index on the
relation (e.g., age or colour).
o Search key is not the same as key (minimal set of fields that uniquely identify a
record in a relation).

J An index contains a collection of data entries, and supports efficient
retrieval of all data entries k¥ with a given key value k.

Indexes

) In Internal schema of Three—Schema Architecture!

. An index for an attribute (or attributes) of a relation is a data structure used to
speed access to tuples of a relation, given values of the attribute(s).

J In a DBMS it is a balanced search tree with giant nodes (a full disk page) called
a B—tree.

(1 Can make query answering and joins involving the attribute much faster.

(d On the other hand, modifications are more complex and take longer.

Declaring Indexes

(J No standard!

(Typical syntax:
CREATE INDEX foodInd ON foods (nationality);
CREATE INDEX SellInd ON Sells (resturant, food);

Using Indexes

 Given a value v, the index takes us to only those tuples that have v in the
attribute(s) of the index.

d Example: use foodlnd and Selllnd to find the prices of foods which nationality is
Iranian and sold by Joe. (next slide)

1 With the indices, just retrieve tuples satisfying these conditions
o Clearly, can result in huge savings (vs. retrieving all tuples from the mentioned relations)

SELECT price

FROM foods, Sells

WHERE nationality = ‘Iranian’ AND
foods.name = Sells.food AND
resturant = ‘Joe’’s resturant’;

1. Use foodlnd to get all the foods which Iranian nationality.
2. Then use Selllnd to get prices of those foods, with resturant = " Joe’ ' s resturant’

E.g., Tree index

Non-leaf
Pages cee
o oo coo
L fP | o oo |(—)| oo |(—)| o oo |(—)| c oo
eaf Pages

(Sorted by search key)

< Leaf pages contain data entries
< Non-leaf pages have index entries; used only to direct searches:

Alternatives for Data Entry k* in Index

a Three alternatives:

o Data record with key value k
o <k, rid of data record with search key value k>
o <k, list of rids of data records with search key k>

O Alternative 3 more compact than Alternative 2, but leads to

variable sized data entries even if search keys are of fixed length.

(1 Choice of alternative for data entries is orthogonal to the indexing
technique used to locate data entries with a given key value k
o Examples of indexing techniques: B+ tree, hash based structures
o Typically, index contains auxiliary information that directs searches to
the desired data entries
J Clustered vs. unclustered: If order of data records is the same as, or
“close to’, order of data entries, then called clustered index.

Clustered vs. Unclustered Index

[Suppose that Alternative (2) is used for data entries, and that the data records

are stored in a Heap file.

o To build clustered index, first sort the Heap file (with some free space on each page for future

inserts).

o Overflow pages may be needed for inserts. (Thus, order of data recs is "close to’, but not

identical to, the sort order.)

CLUSTERED :ﬂnﬁ{% EE%E?} for UNCLUSTERED
/4 N\ / \
g Data entries | | Data entries <> > <>
7/ [\\ AN (Index File) AKX KR~ X
A NN <Datﬂaf"e> VS ANAY N

Data Recordsg

Data Records

Clustered Index

A cluster index defined the order in which
data is physically stored in a table.

o For example Dictionary.

O A table can only have one cluster index.

. If you configure a PRIMARY KEY, Database
Engine automatically creates a clustered
index, unless a clustered index already exists.

b /biz/, B nown the second letter of the alpha.
bet, between A and (

BA abbr bachelor of arts O She hus o A4 in
i, (NOTE: writion aftor tho
name. Jane Bushol BA)

boa Moy verd 1o make the sound that a
sheep makes with its voice 8 nown the sound
that a sheep makes with its voice

babble bebialV noun 1. a linke sound
made by water 33 o flows O the Mabble of the
sircam 2. the sound of people talking to
gether O a Aabdic of voioes in the mext room
8 vord V. (of water) 1o make a sound as it
flows O We sat on the gross by u babblng

Aok 2. 10 speak i a confused way O She
baldled @ few
What s he Dl
babe /ety noun 1. a baby 2. an sttractive
young man of woman O She s o reul Aabe! 3.
a girl (informal. sometimes offensive)
Come on, Mabe, let's hit the torwn
baboon Ma'bun/ nown a type of large Al
rican monkey
1 baby /beibi/ noun 1. a very young child
Mot hablex shart to walk wien they are

B «

riad 2. & person with a first degree from a
umiversity O o Aachedor of ares O He lefl unt-
versily in 1985 with u Rachelor of Schemce
degree

bachelor's degree /bt falaz diyrief
noun a fiest degree from a university

v back /bxk/ noun 1. the part of your body
whech 15 Dot in front © She wemt
ng her dock. © Me ourried hix
Dowt 't lift thot beany b pory
It yowr hack 0 do something behind
someone's back do something without tell-
ing the person who it affects © to turn your
back on somcone o um round so that your
back 15 towards someone, #s a sign that you
we snnoyed o glad o see the back of some-
one pleased that someone has left o to put
someonc's back up 1o annoy somcone 0
have broken the back of the work have
dooe most of the work 2, the opposite part 1o
the front O He wrote his address on the hack
of the emvelope Mc st In the Aack of the
heex and went tor sleep. O The dining room Is
wt the back of the hotve to know a place
like the back of your hand 1o know a place

Clustered Index

PhoneNumber
dbo.PhoneBook

LastName =

FirstName =
Mmiller, Ben

Adams, Jay Miller, Ben
Burnett, Linda Suess, Gary

Diaz, Brenda Taylor, Mike

Adams, Jay Burnett, Linda Dpiaz, Brenda Taylor, Mike
158-555-0142 121-555-0121 147-555-0192 204-555-0189

Alexander, mary Campbell, Frank pDoyle, Patricia Thames, Judy
344-555-0133 491-555-0132 899-555-0134 799-555-0118

genson, Edna Clayton, Jane Evans, John vargas, Gary
789-555-0189 206-555-0195 581-555-0172 112-555-0176

Brewer, Alan Cooper, Scott Haines, Betty vessa, Robert
494-555-0134 733-555-0182 867-555-0114 560-555-0171

Results:
581-555-0172

CE384: Database Design Maryam Ramezani 17

Clustered Index

« Atable can only have one cluster
iIndex. It's impossible to physically
arrange the same date in two different
ways without having a separate
structure to store that information.

 Non-clustered Indexes come in!

Non—Clustered Index

A non—clustered index is stored at one
place and table data is stored in
another place. For example Book Index.
Instead of having base table at the leaf
of tree, we have a set of pointers or
references back to the base data.

A table can have multiple non—clustered
index.

Non—clustered index is slower than
clustered index.

If the index is hon—unique, a uniquified
value is adds internally to make it
unique, and it carries through into
reference values. RIDs are always

UAIEGIB:

Table of Contents

Acknowledgments...........

A R A Ny O

Part| Envision the Possibilities

1 WelcometoOffice 2010ccvvvvrinannn

Features that Fit Your Work Style
Changes In Office 2010
Let Your Ideas Soar
Collaborate Easily and Naturally
Work Anywhere—and Everywhere

Exploring the Ribbon

-

S Oy W

Non—Clustered Index

PhoneNumber
dbo.PhoneBook

799-555-0118

LastName =
FirstName =

Miller,

RID=Row Identifier= physical
location of the rows in the

table.

\

CE384: Database Design

4

Adams, Jay
Alexander, Mary
Benson, Edna
8rewer, Alan

4

Adams, Jay
Burnett, Linda

Diaz, Brenda

¥

N

Burnett, Linda
campbell, Frank
Clayton, Jane
Cooper, Scott

)

Miller, Ben

Taylor, Mike

Diaz, Brenda
Doyle, Patricia
Evans, John
Haines, Betty

| Tl

vessa, Robert

Alexander, Mary
344-555-0133

Kurtz, Jeffrey
452-555-0179

Vessa, Robert
560-555-0171

Thames, Judy

799-555-0118

29-ULL0

Martinez, Frank
171-555-0147

Haines, Betty
867-555-0114

Burnett, Linda
121-555-0121

Harris, Keith
170-555-0127

Kitt, Sandra
303-555-0117

Brewer, Alan
494-555-0134

Campbell, Frank
491-555-0132

Logan, Todd
783-555-0110

Clayton, Jane
206-555-0195

Johnson, Brian
320-555-0134

Liu, pavid
440-555-0132

Diaz, Brenda
147-555-0192

Hash—Based Indexes

(d Good for equality selections.

= Index is a collection of buckets. Bucket = primary page plus zero or
more overflow pages.

= Hashing function h: h(r) = bucket in which record rbelongs. h looks at
the search key fields of r.

[If Alternative (1) is used, the buckets contain the data records; otherwise, they

contain <key, rid> or <key, rid-list> pairs.

Index—organized file hashed on age, with auxiliary index on sal

h(age)=00 .7
age fi(age)=01,,
h(age)=10
\\.J
Alternative 1 with clustered

Smith, 44, 3000

Jones, 40, 6003

Tracy, 44, 5004

Ashby, 25, 3000

Basu, 33, 4003

Bistow, 29, 2007

Cass, 50, 5004

7

Daniels, 22, 6003

3000

3000

5004

5004

4003

2007

6003

6003

\\\h(sal):OO

|-h(sal)=11

Alternative 2 with
non-clustered

B+ Tree Indexes

Non-leaf

Pages

Leaf | c oo ((—) oo o |(—)| c oo |(—)| oo |
Pages

Why?
< Leaf pages contain data entries, and are chained (prev & next)

< Non-leaf pages contain index entries; they direct searches:

index entry
- 1

Po | K1

I |

B+ Tree Indexes

(1 Faster than binary search.
[Lots of pointer while the height o tree is at most 3 or 4!
(Pages at leaves are linked for interval search!

d Example
o Number of pointers: 100 with height:4 will be 10074 leaves.
o Order of tree is 4 but binary search is log(1074)

Example B+ Tree

Find 28%?

Find 29%?

Find All > 17% and < 30%*

Insert/delete: Find data entry in leaf, then change it. Need to adjust parent

sometimes.
o And change sometimes bubbles up the tree

Roo&4

coo o

i 17/L
Entries <= @ wﬁes > @
5 13 27 30

2" | 3 5% 7% | 8* 14*|16* 221 24% 27 29 33* 34* 38*| 39*

Lets test on Postgres

Do

explain

explain

explain

explain

explain

analyze

analyze

analyze

analyze

analyze

select * from athlete a where sport id=1

select athlete id from athlete a where athlete id =15

select * from athlete a where athlete id =15

select * from athlete a where a.athlete name ='browntoni’

select * from athlete a where a.athlete name like '%b%'

Using Both Clustered & Non—Clustered

1 Since a non—clustered index is separate from the base data, the base
data could exist instead as clustered index. So the references in leaf of
non—clustered index are not RID, but instead are the clustered index
key values.

Filtered Indexes

(] Filtered indexes only contain rows that meet a user—defined predicate, by adding
WHERE clause to the index definition. (In Postgres its name Partial Index)

IX_PhoneBooOk_NCI
dbo.PhoneBook(LastName, FirstName)

(LastName >=) J-

O A clustered index can’ t be filtered because it has to contain all the data in the table.

Database Tuning

(J A major problem in making a database run fast is deciding which indexes to
create.

] Recall:

o Pro: An index speeds up queries that can use it.

o Con: An index slows down modifications on its relation because the index must be modified too.

(J The key for a relation is usually the most useful attribute to have an index on:
o Queries in which a value for a key is specified are common.

o For a given key value there is only one tuple. Thus the index returns at most one tuple, requiring
just 1 page from the relation instance to be retrieved.

Partitioning

Partitioning

d When the table size grows over time, each operation cost on the table
will increase as well.
O We can’ t increase the size of the table over 32GB in normal conditions.
Before reaching this size performance issues may arise.
Good Solution: Partitioning

Partitioning

Add partitioning for a table?

O It shouldn’ t be the first option to improve performance!"
Why?

o It adds another level of complexity!"

o Unlike other performance enhancing such as indexing, partitions are part of
table definition so its difficult to change!!

Add partitioning for a table?

3 Signs to check a table needs partitioning:
1) Table Size: there is no rule! But encounter long responses time and table
is larger than 200GB

Table size

L%
Client App ~
Instance

Add partitioning for a table?

2) Table Bloat: For a DELETE, it simply marks
the row as unavailable for future transactions,
and for UPDATE, under the hood it's a
combined INSERT then DELETE, where the
previous version of the row is marked
unavailable.

The space cannot be used. To then mark the
space as available for use by the database, a
vacuum process (manually or automatically) lient App
needs to come along behind the operations, Instance
and mark that space available for the database
to use.

Vacuum process should scan all rows. If table
is large vacuum process will take longer.
Partitioning can help to make it faster with

lesSCPY:!

How should the Tables be partitioned?

(1 Partitioning can drastically improve performance on a table when done right, but
when not needed o done wrong can make the performance worse or it can make

the database unstable.

 First look for access patterns for splitting the tables:
o By knowing the applications that access the database.

o Monitoring the logs and generating reports.

Client App
Instance

How should the Tables be partitioned?

| T
E age < 25;

Client App P

RS SH\ * FROM customers

/HERE JEGENSI258

SELECT * FROM weather
@ cities weather.city = cities.name;

R R R s dwhere i m conditions.

These will be the partition keys.
In a good design, we have a small subset of data rather than the whole

Partitioning Methods

Range Partition
List Partition
Hash Partition

Composite Partition

CE384: Database Design Maryam Ramezani

37

Partitioning Methods

O Range partitioning maps data to partitions on the basis of
ranges of partition key values for each partition.

sale_date
2022-05 id sale_date

2022-06 id sale_date
2022-07 T

sale_date
2022-07
2022-07
2022-07

Partitioning Methods

a List partitioning maps rows to partitions by using a
list of discrete values for the partitioning column.

- Good when partition key is category value.

category
Automotive — Automotive id category

Electronics —— Electronics id category
Home

— Home id category
Home

Home
Home

Partitioning Methods

0 Hash partitioning maps data to partitions by using a
hashing algorithm applied to a partitioning key.
- Especially useful when there is no obvious way of diving
data into logical groups.

product
prod_0 = id product

prod_1 id product
prod_2

id product
prod_2

prod_5
prod_8

Partitioning Methods

a0 Composite partitioning:
o Range—Hash sub partitions the range partitions using a hashing
algorithm.
o Range—List sub partitions the range partitions using an explicit list.

Range Partition — Example

O Consider following table with not null age attribute:

Range Partition— Example

(J create table customers (id integer, name text, age numeric)
partition by range (age)

(J create table cust young partition of customers for values
from (MINVALUE) to (25)

J create table cust medium partition of customers for values
from (25) to (75)

J create table cust old partition of customers for values from
(75) to (MAXVALUE)

J insert into customers wvalues (1, 'Bob',20),

(2, "'"Alice',20), (3, "Doe',38), (4, "Richard', 80)

(] select * from customers c

(] select tableoid::regclass,* from customers c

	Default Section
	Slide 1: Optimizing Database Performance
	Slide 2: Introduction
	Slide 3: Motivation
	Slide 4: Files and indices
	Slide 5: Alternative File Organizations
	Slide 6: Indexing
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Indexes
	Slide 10: Indexes
	Slide 11: Declaring Indexes
	Slide 12: Using Indexes
	Slide 13: E.g., Tree index
	Slide 14: Alternatives for Data Entry k* in Index
	Slide 15: Clustered vs. Unclustered Index
	Slide 16: Clustered Index
	Slide 17: Clustered Index
	Slide 18: Clustered Index
	Slide 19: Non-Clustered Index
	Slide 20: Non-Clustered Index
	Slide 21: Hash-Based Indexes
	Slide 22: Index-organized file hashed on age, with auxiliary index on sal
	Slide 23: B+ Tree Indexes
	Slide 24: B+ Tree Indexes
	Slide 25: Example B+ Tree
	Slide 26: Lets test on Postgres
	Slide 27: Using Both Clustered & Non-Clustered
	Slide 28: Filtered Indexes
	Slide 29: Database Tuning
	Slide 30: Partitioning
	Slide 31: Partitioning
	Slide 32: Add partitioning for a table?
	Slide 33: Add partitioning for a table?
	Slide 34: Add partitioning for a table?
	Slide 35: How should the Tables be partitioned?
	Slide 36: How should the Tables be partitioned?
	Slide 37: Partitioning Methods
	Slide 38: Partitioning Methods
	Slide 39: Partitioning Methods
	Slide 40: Partitioning Methods
	Slide 41: Partitioning Methods
	Slide 42: Range Partition - Example
	Slide 43: Range Partition- Example

